« Fiscal disciplining effect of central bank opacity: Stackelberg \textit{versus} Nash Equilibrium »

\textbf{Auteurs}

Meixing Dai, Moïse Sidiropoulos

Document de Travail n°2011 - 17

\textit{Septembre 2011}
Fiscal disciplining effect of central bank opacity:
Stackelberg versus Nash equilibrium

Meixing Daia and Moïse Sidiropoulosb

\textbf{Abstract:} Several recent studies have shown that, when fiscal and monetary authorities play a Stackelberg game, central bank opacity has a fiscal disciplining effect in the sense that it induces the government to reduce taxes and public expenditures, leading hence to lower inflation and output distortions, and lower macroeconomic variability. We show in this paper that, in a Nash equilibrium, the government is still disciplined by central bank opacity. However, the disciplining effect on the level and variability of inflation and the output gap is dominated by the direct effect of opacity.

Keywords: Distortionary taxes, output distortions, central bank transparency (opacity), fiscal disciplining effect.

a BETA, University of Strasbourg, 61, avenue de la Forêt Noire – 67085 Strasbourg Cedex – France; Tel (33) 03 68 85 21 31; Fax (33) 03 68 85 20 71; e-mail: dai@unistra.fr.

b LEAP, Department of Economics, Aristotle University of Thessaloniki, Thessaloniki, Greece 54124, E-mail: msidiro@econ.auth.gr, Phone: (30) 23 10 99 87 10; and BETA, University of Strasbourg, 61, avenue de la Forêt Noire – 67085 Strasbourg Cedex – France; Tel (33) 03 68 85 20 85; Fax (33) 03 68 85 20 71; e-mail: sidiro@cournot.u-strasbg.fr.
1. Introduction

Central bank transparency is usually studied in a game framework focusing on the interactions between the monetary authority and the private sector.\(^1\) Departing from this approach, several studies introduce monetary and fiscal policy interactions. Assuming that the government plays against the central bank as a Stackelberg leader, Ciccarone et al. (2007), and Hefeker and Zimmer (2011) have shown that uncertainty (or opacity) about the central bank’s “political” preference parameter could have a fiscal disciplining effect, inducing lower taxes and hence lower inflation and output distortions. It could also reduce the macroeconomic volatility if the initial degree of opacity is sufficiently high. In a framework where productivity-enhancing public investment could improve future growth potential, Dai and Sidiropoulos (2011) have reexamined the issue of central bank transparency in the Stackelberg equilibrium. They have shown that, when the public investment is highly productivity enhancing, the optimal choice of tax rate and public investment eliminates the effects of distortionary taxation and fully counterbalances both the direct and fiscal-disciplining effects of opacity, on the level and variability of inflation and the output gap. By considering the above sequential timing, these authors agree with the view that the Stackelberg equilibrium concept is the one that better captures fiscal and monetary policy interactions (Beetsma and Bovenberg (1998), Beetsma and Uhlig (1999)).

However, important monetary and fiscal policy decisions could also occur simultaneously. For instance, one could notice that during severe recessions and/or financial crises – such as the

\(^1\) Following the seminal work of Cukierman and Metzler (1986), a large theoretical and empirical literature on central bank transparency has been developed. See, for example, Nolan and Schaling (1998), Faust and Svensson (2001), Chortareas et al. (2002), Eijffinger and Geraats (2006), Demertzis and Hughes Hallet (2007), among others. See Geraats (2002), and Eijffinger and van der Cruijjsen (2010) for a survey of the literature.
current one – the timing of monetary and fiscal policies may well diverge from that of a Stackelberg game between monetary and fiscal authorities. Under these circumstances, it may be reasonable to assume that monetary and fiscal policies are chosen at the same moment. This explains why many authors have considered the implications of non-coordinated monetary and fiscal policy interactions in a Nash game (e.g., Alesina and Tabellini (1987), Beetsma and Bovenberg (1997), Dixit and Lambertini (2003), Di Bartolomeo et al. (2009), Di Bartolomeo and Giuli (2011) among others).

Hughes Hallett and Viegi (2003) have considered the implications of central bank transparency in a Nash game between fiscal and monetary authorities, both concerned with taxes. The fiscal disciplining effect is somewhat present in their model but is not highlighted by the authors. Moreover, in opposite to the above studies on the fiscal disciplining effect in the Stackelberg equilibrium, they consider that uncertainty is only associated with the weight attached to the output gap. This might induce arbitrary economic effects of central bank preference uncertainty (Beetsma and Jensen, 2003) because a small change in the uncertainty specification (e.g., putting the stochastic parameter in the front of one of the two arguments of the central bank’s objective function) can lead to radically different effects.

This paper contributes to the literature on central bank transparency by clarifying the issue of fiscal disciplining effect in a Nash equilibrium using a framework similar to Ciccarone et al. (2007) and Hefeker and Zimmer (2011), with uncertainty affecting both weights allotted to the output and inflation stabilization. The objective of the paper is to show how a change in the game structure could affect the importance of fiscal disciplining effect of central bank opacity.

The reminder of the paper is organized as follows. The next section presents the model. Section 3 presents the Stackelberg equilibrium. Section 4 examines the effect of opacity in the Nash equilibrium. The last section summarizes our findings.
2. The model

We consider a representative competitive firm which chooses labor to maximize profits by taking as given the prices (or the inflation rate \(\pi\)), the wages (and so expected inflation \(\pi^e\)) and tax rate \((\tau)\) on the firm’s revenue, subject to a production technology. The normalized supply function incorporating the effects of distortionary taxes is:

\[x = \pi - \pi^e - \tau, \quad (1) \]

where \(x\) (in log terms) represents the output gap. Equation (1) is a Lucas’s supply function extended by Alesina and Tabellini (1987) to take account of distortionary taxes on the output. We notice that \(\tau\) allows covering a whole range of structural reforms, such as non-wage costs associated with social security (or job protection legislation), the pressures caused by tax or wage competition on a regional basis or the more general effects of supply-side deregulation (Demertzis et al. (2004)).

The fiscal authority is concerned with the stabilization of inflation and output gap fluctuations around a zero target and the stabilization of public expenditures \(g\) (expressed as a percentage of the output) around a target \(\bar{g}\). Its loss function is

\[L^G = \frac{1}{2} E[\delta_1 \pi^2 + x^2 + \delta_2 (g - \bar{g})^2], \quad (2) \]

where \(E\) is an operator of mathematical expectations, \(\delta_1\) and \(\delta_2\) are the weights assigned to the stabilization of inflation and public expenditures respectively. The weight assigned to the output-gap stabilization is unity. The public expenditures are composed of public sector consumption, i.e. public sector wages, current public spending on goods and other government spending. They are assumed to yield immediate utility to the government and have no incidence on the output.
supply. The government minimizes (2) subject to the budget constraint excluding seigniorage revenue and public debt:

\[g = r. \]

(3)

Retaining the control of fiscal instruments, the government delegates the conduct of monetary policy to the central bank. The latter sets its policy to minimize the loss function

\[L^{CB} = \frac{1}{2} \mathbb{E}[\delta (\mu - \varepsilon) \pi^2 + (1 + \varepsilon) x^2], \quad \mu > 0, \]

(4)

where \(\mu \) is the expected relative weight that the central bank assigns to the inflation stabilization and it could be different from \(\delta \). Larger (small) values of \(\mu \) signify that the central bank is relatively conservative (liberal or populist) in the sense of Rogoff (1985).

The central bank does not make full disclosure about the weights assigned to the inflation and output-gap stabilization, meaning that \(\varepsilon \) is a stochastic variable for the government and the private sector. The distribution of \(\varepsilon \) is characterized by \(\mathbb{E}(\varepsilon) = 0 \), \(\text{var}(\varepsilon) = \mathbb{E}(\varepsilon^2) = \sigma^2_{\varepsilon} \) and \(\varepsilon \in [-1, \mu] \). A higher variance \(\sigma^2_{\varepsilon} \) represents a higher degree of central bank political opacity. The case where the central bank is completely predictable and hence completely transparent is represented by \(\sigma^2_{\varepsilon} = 0 \). Given that \(\mathbb{E}(\varepsilon) = 0 \) and \(\varepsilon \in [-1, \mu] \), \(\sigma^2_{\varepsilon} \) has an upper bound so that \(\sigma^2_{\varepsilon} \in [0, \mu] \) (Ciccarone et al., 2007).

3. The Stackelberg equilibrium

To put into evidence the fiscal disciplining effect in the Nash equilibrium compared with that in the Stackelberg equilibrium, we synthetize in this section the benchmark model of Hefeker and Zimmer’s (2011).
The timing of the game is the following. First, the private sector forms inflation expectations, \(\pi^e \), then the government sets fiscal policy, \(\tau \), and lastly the central bank makes monetary policy decision, \(\pi \). The private sector, composed of atomistic agents, plays a Nash game against the central bank. The government plays against the central bank as a Stackelberg leader.

The game is solved backwards. The minimization of (4) subject to (1) leads to the central bank’s reaction function:

\[
\pi = \frac{(1 + \varepsilon)(\pi^e + \tau)}{1 + \mu}. \tag{5}
\]

The budget constraint (3) implies that the government has only one free instrument to choose between \(\tau \) and \(g \). Assume that the government uses \(\tau \) as policy instrument and sets it to minimize (2), subject to (1) and (5). This leads, given that \(\mathbb{E}\left[\frac{(\varepsilon - \mu)^2 + \delta_i(1 + \varepsilon)^2}{(1 + \mu)^2}\right] = \frac{\mu^2 + \delta_i}{(1 + \mu)^2} \sigma_e^2 \), to the government’s reaction function:

\[
\tau = \frac{\delta_i(\mu + 1)^2 \bar{g} - [(\mu^2 + \delta_i) + (1 + \delta_i)\sigma_e^2] \pi^e}{\mu^2 + \delta_i + (1 + \delta_i)\sigma_e^2 + \delta_2(1 + \mu)^2}. \tag{6}
\]

Substituting \(\tau \) given by (6) into (5) and imposing rational expectations yield:

\[
\pi^e = \frac{\delta_i(1 + \mu)\bar{g}}{\delta_i\mu(1 + \mu) + \mu^2 + \delta_i + (1 + \delta_i)\sigma_e^2}. \tag{7}
\]

Using (1), (3) and (5)-(7), we solve for \(\pi, \ x, \ \tau, \ g \), and the variance of \(\pi \) and \(x \) at the Stackelberg equilibrium denoted by an upper index “s”:

\[
\pi^s = \frac{(1 + \varepsilon)\delta_i(1 + \mu)\bar{g}}{\delta_i\mu(1 + \mu) + \mu^2 + \delta_i + (1 + \delta_i)\sigma_e^2}, \tag{8}
\]

\[
\chi^s = \frac{(\varepsilon - \mu)(1 + \mu)\delta_i\bar{g}}{\delta_i\mu(1 + \mu) + \mu^2 + \delta_i + (1 + \delta_i)\sigma_e^2}. \tag{9}
\]
\[
\tau^S = g^S = \frac{\delta_2 \mu (1 + \mu) \bar{\sigma}_e}{\delta_2 \mu (1 + \mu) + \mu^2 + \delta_1 + (1 + \delta_1) \sigma_e^2},
\]

(10)

\[
\text{var}(s^S) = \text{var}(x^S) = \frac{[\delta_2 (1 + \mu) \bar{\sigma}_e^2]}{[\delta_2 \mu (1 + \mu) + \mu^2 + \delta_1 + (1 + \delta_1) \sigma_e^2]^2}.
\]

(11)

The denominator of (8)-(11) increases with \(\sigma_e^2 \), the numerator of (8)-(10) is invariant with \(\sigma_e^2 \) while the numerator of (11) increases with \(\sigma_e^2 \). Thus, an increase in \(\sigma_e^2 \) reduces \(\pi^S \), \(\tau^S \) and \(g^S \), leading to higher \(x^S \) (lower output distortions) since \((\epsilon - \mu) < 0 \). In effect, output distortions due to taxes destined to finance public expenditures imply higher expected and current inflation, and lower output gap. The government perceives that marginal costs associated with higher taxes are higher when the central bank is more opaque. Brainard’s (1967) conservatism principle will guide the government to adopt a less aggressive fiscal policy (“disciplining effect”). This stance of fiscal policy leads to lower inflation and higher output gap at the cost of larger deviation of public expenditures from their target.

Opacity triggers two opposing effects on macroeconomic volatility. The fiscal disciplining effect of opacity, by lowering \(\tau^S \), \(g^S \) and \(\pi^S \) (and increasing \(x^S \)), implies lower \(\text{var}(\pi^S) \) and \(\text{var}(x^S) \). It acts on the common denominator of (8)-(11). The direct effect of opacity reflects the impact of the realization of \(\epsilon \) on inflation and the output gap. The shock \(\epsilon \) enters in the numerator of (8)-(9), implying that \(\sigma_e^2 \) affects the numerator of (11). The direct and fiscal disciplining effects of opacity on macroeconomic variability are respectively defined by the derivative of \(\text{var}(\pi^S) \) with respect to \(\sigma_e^2 \) present in the numerator and the denominator of (11):

\[
\frac{\partial \text{var}(\pi^S)}{\partial \sigma_e^2} = \frac{\partial \text{var}(x^S)}{\partial \sigma_e^2} = \frac{\text{The direct effect of opacity}}{\text{The fiscal disciplining effect of opacity}}.
\]

\[
= \frac{\frac{[\delta_2 (1 + \mu) \bar{\sigma}_e^2]}{[\delta_2 \mu (1 + \mu) + \mu^2 + \delta_1 + (1 + \delta_1) \sigma_e^2]^2}}{-\frac{[\delta_2 \mu (1 + \mu) \bar{\sigma}_e^2]}{[\delta_2 \mu (1 + \mu) + \mu^2 + \delta_1 + (1 + \delta_1) \sigma_e^2]^2}}.
\]
The fiscal disciplining effect can more than counterbalance the direct effect of opacity on the variability of inflation and the output gap if the initial degree of opacity is sufficiently high, i.e.
\[\sigma^2 > \frac{\delta_2 \mu (1+\mu) \mu^2 + \delta_1}{1 + \delta_1} \] and vice versa (Hefeker and Zimmer (2010)). The fiscal disciplining effect is more likely to induce a decrease in the macroeconomic volatility if the central bank is less averse to inflation (i.e., smaller \(\mu \)) and the government less concerned with the public expenditures deviations (i.e., smaller \(\delta_2 \)). In mathematical terms, given the upper bound on \(\sigma^2 \) (i.e., \(\sigma^2 < \mu \)), the previous lower bound on \(\sigma^2 \) is valid only when
\[\frac{(\mu^2 + \delta_1) + \delta_2 \mu (1+\mu)}{(1+\delta_1)} < \mu, \] implying that
\[\delta_2 < \frac{(1+\delta_1)\mu - (\mu^2 + \delta_1)}{\mu (1+\mu)}. \] If the latter conditions are reversed, the direct effect of opacity will always dominate the fiscal disciplining effect (Dai and Sidiropoulos (2011)).

4. The Nash equilibrium

The previous findings are based on the Stackelberg game between fiscal and monetary authorities. Such a game is justified if the government sets its fiscal policy once at the beginning of a period and the central bank makes monetary policy decisions during the period. However, important monetary and fiscal policy decisions could also occur simultaneously as we can observe in the current global financial and economic crisis. Allowing the fiscal and monetary authorities to move simultaneously in a Nash game, we can examine how a modification in the timing of the strategic game could affect the effects of opacity.

For simplicity, we retain the balanced-budget assumption for the Nash game. We remark that, according to Hefeker and Zimmer (2011), the balanced-budget assumption can be justified when the scope is a long- to medium-term analysis. However, in a short-term Nash game, this
assumption can be justified on the ground that the monetary authority is independent of the fiscal authority (limiting hence the money financing of the public deficit) and the latter could be limited by a fiscal rule or debt ceiling which makes the bond financing of the public deficit unlikely.\(^2\)

The timing of the game is the following. First, the private sector forms \(\pi^e\), then simultaneously, the government sets \(\tau\) and the central bank chooses \(\pi\). The government and the central bank play a Nash game. The game is solved by backward induction. Rational private sector will realize that the final outcomes will emerge from a solution combining the optimal reaction functions of both fiscal and monetary authorities and the expected inflation rate that these reaction functions imply.

Minimizing (4) subject to (1) leads to the central bank’s reaction function which is the same as (5). Taking \(\pi^e\) and \(\pi\) as given, the government minimizes (2) subject to (1) and (3) and behaves according to the reaction function

\[
\tau = \frac{1}{1 + \delta_2} (\pi - \pi^e) + \frac{\delta_2}{1 + \delta_2} \bar{g}.
\]

(12)

Solving (5) and (12) for \(\pi\) and \(\tau\) in terms of \(\pi^e\) and \(\bar{g}\) yields

\[
\pi = \frac{(1 + \epsilon)\delta_2 (\pi^e + \bar{g})}{\delta_2 + \mu (1 + \delta_2) - \epsilon},
\]

(13)

\[
\tau = \frac{(\epsilon - \mu)\pi^e + \delta_2 (1 + \mu) \bar{g}}{[\delta_2 + \mu (1 + \delta_2) - \epsilon]}.
\]

(14)

Imposing rational expectations by taking mathematical expectations of (13), we obtain:

\[
\pi^e = \frac{\Omega \delta_2}{(1 - \Omega \delta_2)} \bar{g}.
\]

(15)

\(^2\) An extension of the model to take account of bond and money financing of the public deficit could be indeed very interesting. The presence of public debt and seigniorage revenue could considerably complicate the results by introducing the dynamics due to the accumulation of public debt and the interaction between the effects of opacity on seigniorage revenue and fiscal decisions. As a first approach, we want to provide some clear-cut analytical results which allow comparing the effects of opacity at Stackelberg and Nash equilibrium.
where \(\Omega = E[\frac{1+\epsilon}{\delta_2 + \mu(1+\delta_2)}] \approx \frac{1}{\delta_2 + \mu(1+\delta_2)} + \frac{\epsilon(1+\mu)(1+\delta_2)}{[\delta_2 + \mu(1+\delta_2)]^2} \sigma_e^2 \) is a second-order Taylor approximation.

Using (1), (3) and (12)-(15) yields the Nash equilibrium solutions denoted by an upper index “N”:

\[
\pi^N = \frac{(1+\epsilon)\delta_2 \bar{g}}{[\delta_2 + \mu(1+\delta_2) - \epsilon](1-\Omega\delta_2)},
\]

\[
x^N = \frac{(\epsilon - \mu)\delta_2}{[\delta_2 + \mu(1+\delta_2) - \epsilon](1-\Omega\delta_2)} \bar{g},
\]

\[
\tau^N = g^N = \frac{(1+\mu)\delta_2 - [\delta_2 + \mu(1+\delta_2) - \epsilon]\Omega\delta_2}{[\delta_2 + \mu(1+\delta_2) - \epsilon](1-\Omega\delta_2)} \bar{g},
\]

\[
\text{var}(\pi^N) = \left(1 + \frac{\delta_2}{\delta_e^2}\right)^2 \text{var}(x^N) \approx \left[\frac{\delta_2 \bar{g}}{1 - \Omega \delta_2}\right]^2 \left(1 + \mu\right)^2 \left(1 + \frac{\delta_2}{\delta_e^2}\right)^2 \sigma_e^2,
\]

where the second-order Taylor approximation is used to obtain (19). Deriving (16)-(19) with respect to \(\sigma_e^2 \) gives

\[
\frac{\partial \pi^N}{\partial \sigma_e^2} = \frac{(1+\epsilon)\delta_2^2 \bar{g}}{[\delta_2 + \mu(1+\delta_2) - \epsilon](1-\Omega\delta_2)^2} \frac{\partial \Omega}{\partial \sigma_e^2} > 0,
\]

\[
\frac{\partial x^N}{\partial \sigma_e^2} = \frac{(\epsilon - \mu)\delta_2^2 \bar{g}}{[\delta_2 + \mu(1+\delta_2) - \epsilon](1-\Omega\delta_2)^2} \frac{\partial \Omega}{\partial \sigma_e^2} < 0,
\]

\[
\frac{\partial \tau^N}{\partial \sigma_e^2} = \frac{(\epsilon - \mu)\delta_2 \bar{g}}{[\delta_2 + \mu(1+\delta_2) - \epsilon](1-\Omega\delta_2)^2} \frac{\partial \Omega}{\partial \sigma_e^2} < 0,
\]

\[
\frac{\partial \text{var}(\pi^N)}{\partial \sigma_e^2} \approx \left(1 + \frac{\delta_2}{\delta_e^2}\right)^2 \frac{\partial \text{var}(x^N)}{\partial \sigma_e^2} \approx \Psi \left[\frac{\delta_2 \bar{g}}{(1 - \Omega \delta_2)}\right]^2 > 0, \forall \sigma_e^2 < \frac{\mu[\delta_2 + \mu(1+\delta_2)]^2}{\delta_2 (1+\mu)};
\]

\(^3\) We can decompose as before the direct and fiscal disciplining effects of opacity on var(\(\pi^N\)) and var(\(x^N\)).
where \(\frac{\partial \Omega}{\partial \sigma_e^2} = \frac{(1 + \mu)(1 + \delta_e)}{[\delta_e + \mu(1 + \delta_e)]^3} \) and \(\Psi = \frac{(1 + \mu)^2(1 + \delta_e)^2}{[\delta_e + \mu(1 + \delta_e)]^3} \{ \delta_e(1 + \mu)\sigma_e^2 + \mu[\delta_e + \mu(1 + \delta_e)]^3 \} \)

\[\{ \delta_e + \mu(1 + \delta_e) \}^3 \{ \mu[\delta_e + \mu(1 + \delta_e)]^3 \} \frac{\partial \var(\pi_e^N)}{\partial \sigma_e^2} = 0 \]

Given the upper bound on \(\sigma_e^2 \) (i.e., \(\sigma_e^2 < \mu \)), the above condition ensuring \(\frac{\partial \var(\pi_e^N)}{\partial \sigma_e^2} > 0 \) must be rewritten as \(\forall \sigma_e^2 < \min \left\{ \mu, \frac{\mu[\delta_e + \mu(1 + \delta_e)]^3}{\delta_e + \mu(1 + \delta_e)} \right\} \).

Higher opacity induces higher \(\pi_e^N \) and lower \(x_e^N \) (higher output distortions). It affects negatively \(\tau_e^N \). The fiscal disciplining effect is present in the Nash equilibrium and induces a lower \(\tau_e^N \), while being unable to counterbalance the direct effect of opacity on \(\pi_e^N \) and \(x_e^N \).

We remark that in (16)-(19), when \(1 - \Omega \delta_e \) tends to zero, \(\pi_e^N \), \(x_e^N \) and \(\tau_e^N \) could tend to +\(\infty \) and \(-\infty \) while \(\var(\pi_e^N) \) and \(\var(x_e^N) \) approach +\(\infty \). Under full transparency, we have \(1 - \Omega \delta_e > 0 \) and \(\pi_e^N > 0 \). Higher opacity leads to higher \(\pi_e^N \), with the latter approaching +\(\infty \) when \(\sigma_e^2 \) increases in the way that \(1 - \Omega \delta_e \to 0_+ \). Then, a slight increase in \(\sigma_e^2 \) could turn \(\pi_e^N \) from +\(\infty \) to \(-\infty \). The predictions of the model just before and after that the term \(1 - \Omega \delta_e \) changes sign are implausible and this could be explained by that the Taylor approximation works only with small deviations. To avoid that, we impose \(1 - \Omega \delta_e > 0 \), i.e. \(\sigma_e^2 < \frac{\mu[\delta_e + \mu(1 + \delta_e)]^3}{\delta_e + \mu(1 + \delta_e)} \).

Taking account of the condition \(\sigma_e^2 < \mu \), we obtain \(\sigma_e^2 < \min \left\{ \mu, \frac{\mu[\delta_e + \mu(1 + \delta_e)]^3}{\delta_e + \mu(1 + \delta_e)} \right\} \). The latter is the same than the condition which ensures that an increase in \(\sigma_e^2 \) induces higher \(\var(\pi_e^N) \) and \(\var(x_e^N) \). Given the above discussion, we exclude the possibility \(\sigma_e^2 > \frac{\mu[\delta_e + \mu(1 + \delta_e)]^3}{\delta_e + \mu(1 + \delta_e)} \) which implies that \(\frac{\partial \var(\pi_e^N)}{\partial \sigma_e^2} < 0 \). Therefore, contrary to the Stackelberg equilibrium, the fiscal
disciplining effect cannot counterbalance the direct effect of opacity on the volatility of inflation and the output gap.

The above findings could be explained by the absence of any commitment made by the government in the Nash game. Its non-cooperative behaviour will lead the central bank to doubt if opacity has any fiscal disciplining effect on the government’s decisions. Thus, the government will not have incentive to restrict as less as possible public expenditures and taxes. In other words, Brainard’s (1967) conservatism principle which implies that the government is incited to adopt a less aggressive fiscal policy under central bank opacity is not likely to play an important role in guiding the government’s actions in the Nash equilibrium even though the perceived marginal costs associated with higher taxes are higher. Therefore, as the fiscal disciplining effect is unimportant, the direct effect of opacity will dominate.

5. Conclusion

In this paper, we have shown that the fiscal disciplining effect of central bank opacity, which can significantly affect the macroeconomic performance and volatility in the framework where the government and the central bank act respectively as Stackelberg leader and follower, could become insignificant when these two authorities play a Nash game. At the Nash equilibrium, an increase in the degree of central bank opacity will always induce a higher inflation, a lower output gap and a higher macroeconomic volatility, despite the existence of fiscal disciplining effect. These results are independent of the initial degree of central bank opacity, in opposite to the Stackelberg equilibrium.
References:

2011–01 La création de rentes : une approche par les compétences et capacités dynamiques
Thierry BURGER-HELMCHEN, Laurence FRANK, janvier 2011.

2011–02 Le Crowdsourcing : Typologie et enjeux d’une externalisation vers la foule.
Claude GUITTARD, Éric SCHENK, janvier 2011.

2011–03 Allocation of fixed costs : characterization of the (dual) weighted Shapley value
Pierre DEHEZ, janvier 2011.

2011–04 Data games: sharing public goods with exclusion (2nd version)
Pierre DEHEZ, Daniela TELLONE, janvier 2011.

2011–05 Règle du taux d'intérêt et politique d’assouplissement quantitatif avec un rôle pour la
monnaie
Meixing DAI, janvier 2011.

2011–06 Ambiguity and Optimal Technological Choice: Does the Liability Regime Matter?
Julien JACOB, février 2011.

2011–07 Politique budgétaire et discipline budgétaire renforcée dans une union monétaire
Irem ZEYNELOGLU, mars 2011.

Magali JAOUL-GRAMMARE, avril 2011.

2011–09 The scarring effect of unemployment in ten European countries : an analysis based on
the ECHP.
Olivia EKERT-JAFFE, Isabelle TERRAZ, avril 2011.

2011–10 Almost common value auctions: more equilibria.
Gisèle UMBHAUER, juin 2011.

2011–11 Increasing returns to scale in U.S. manufacturing industries: evidence from direct and
reverse regression
Xi CHEN, juin 2011.

2011–12 Cycle d’innovation dans les services, différences technologiques et similarités
organisationnelles dans les entreprises de mécanique françaises et allemandes.
Thierry BURGER-HELMCHEN, juillet 2011.

2011–13 Reversibility and switching options values in the geological disposal of radioactive
waste
Oana IONESCU, Sandrine SPAETER, juillet 2011.

2011–14 Nuclear Waste Disposal in France : the Contribution of Economic Analysis
Jean-Alain HERAUD, Oana IONESCU, juillet 2011.

2011–15 Assessing the impact of the EU ETS using firm level data
Jan ABRELL, Anta NDOYE FAYE, Georg ZACHMANN, juillet 2011.
2011–16 The EU legislation game: the case of asylum law
Jenny MONHEIM-HELSTROFFER, Marie OBIDZINSKI, août 2011.

2011–17 Fiscal disciplining effect of central bank opacity: Stackelberg versus Nash equilibrium
Meixing DAI, Moïse SIDIROPOULOS, septembre 2011.

La présente liste ne comprend que les Documents de Travail publiés à partir du 1er janvier 2011. La liste complète peut être donnée sur demande.
This list contains the Working Papers written after January 2011, 1rst. The complete list is available upon request.